评估软件名称

Overview

Principal Theory

Research History
Software Structure
Specie Sensitivity Distribution
BAYESIAN Inference
MCMC Simulation
DIC Optimization
Ecorisk & Uncertainty
Joint Probability Curve
Exergy SSD

Development Environment

Main Interface

Main Function Lists Panel
BMC-SSD Panel
Models Optimization Panel
JPC Panel
ExSSD Panel
Work Path & Output Results

Operation Procedure

Installation & Initialization
Folder & File Extraction
SSD Models & Ecorisk
JPC & Its Indicators
Models Optimization & Parameters
ExSSD Models & ExEcorisk

Relevant Literatures

Developers & Contact

Download

Links

College of Urban and Environment Science
Peking University

 

Relevant Literatures

Literatures required to cite when using BMC-SSD

  • He, W., Kong, X., Qin, N., He, Q., Liu, W., Bai, Z., Wang, Y., Xu, F., 2019. Combining species sensitivity distribution (SSD) model and thermodynamic index (exergy) for system-level ecological risk assessment of contaminates in aquatic ecosystems. Environment International 133, 105275.
  • He, W., Qin, N., Kong, X., Liu, W., Wu, W., He, Q., Yang, C., Jiang, Y., Wang, Q., Yang, B. and Xu, F., 2014. Ecological risk assessment and priority setting for typical toxic pollutants in the water from Beijing-Tianjin-Bohai area using Bayesian matbugs calculator (BMC). Ecological Indicators 45, 209-218.
  • He, W., Qin, N., Kong, X.-Z., Liu, W.-X., He, Q.-S., Wang, Q.-M., Yang, C., Jiang, Y.-J., Yang, B., Wu, W.-J. and Xu, F.-L., 2014. Water quality benchmarking (WQB) and priority control screening (PCS) of persistent toxic substances (PTSs) in China: Necessity, method and a case study. Science of the Total Environment 472, 1108-1120.

References

  • Domene, X., Ramirez, W., Mattana, S., Alcaniz, J.M. and Andres, P., 2008. Ecological risk assessment of organic waste amendments using the species sensitivity distribution from a soil organisms test battery. Environ. Pollut. 155 (2), 227-236.
  • Maltby, L., Blake, N., Brock, T.C.M. and Van Den Brink, P.J., 2005. Insecticide species sensitivity distributions: Importance of test species selection and relevance to aquatic ecosystems. Environ. Toxicol. Chem. 24 (2), 379-388.
  • Wang, B., Yu, G., Huang, J., Wang, T. and Hu, H.Y., 2010a. Probabilistic ecological risk assessment of OCPs, PCBs, and DLCs in the Haihe River, China. TheScientificWorldJournal 10, 1307-1317.
  • Steen, R., Leonards, P.E.G., Brinkman, U.A.T., Barcelo, D., Tronczynski, J., Albanis, T.A. and Cofino, W.P., 1999. Ecological risk assessment of agrochemicals in European estuaries. Environ. Toxicol. Chem. 18 (7), 1574-1581.
  • Solomon, K.R., Baker, D.B., Richards, R.P., Dixon, D.R., Klaine, S.J., LaPoint, T.W., Kendall, R.J., Weisskopf, C.P., Giddings, J.M., Giesy, J.P., Hall, L.W. and Williams, W.M., 1996. Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15 (1), 31-74.
  • van Straalen, N.M., 2002. Threshold models for species sensitivity distributions applied to aquatic risk assessment for zinc. Environ. Toxicol. Pharmacol. 11 (3-4), 167-172.
  • Forbes, V.E., Calow, P. and Sibly, R.M., 2001. Are current species extrapolation models a good basis for ecological risk assessment? Environ. Toxicol. Chem. 20 (2), 442-447.
  • Aldenberg, T. and Jaworska, J.S., 2000. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicology and Environmental Safety 46 (1), 1-18.
  • Forbes, V.E. and Calow, P., 2002. Species sensitivity distributions revisited: A critical appraisal. Human and Ecological Risk Assessment 8 (3), 473-492.
  • Grist, E.P.M., O'Hagan, A., Crane, M., Sorokin, N., Sims, I. and Whitehouse, P., 2006. Bayesian and time-independent species sensitivity distributions for risk assessment of chemicals. Environ Sci Technol 40 (1), 395-401.
  • Verdonck, F., Jaworska, J., Thas, O. and Vanrolleghem, P.A., 2000. Uncertainty techniques in environmental risk assessment. Mededelingen-Faculteit Landbouwkundige En Toegepaste Biologische Wetenschappen 65 (4), 247-252.
  • Chen, S.H. and Pollino, C.A., 2012. Good practice in Bayesian network modelling. Environmental Modelling & Software 37, 134-145.
  • Jeremiah, E., Sisson, S.A., Sharma, A. and Marshall, L., 2012. Efficient hydrological model parameter optimization with Sequential Monte Carlo sampling. Environmental Modelling & Software 38, 283-295.
  • Gallagher, K., Touart, L. and Lin, J., 2001. A Probabilistic Model and Process to Assess Risks to Aquatic Organisms Office of Pesticide Programs Environmental Fate and Effects Division, US EPA.
  • Buckler, D.R., Mayer, F.L., Ellersieck, M.R. and Asfaw, A., 2005. Acute toxicity value extrapolation with fish and aquatic invertebrates. Archives of Environmental Contamination and Toxicology 49 (4), 546-558.
  • Solomon, K., Giesy, J. and Jones, P., 2000. Probabilistic risk assessment of agrochemicals in the environment. Crop Prot 19 (8-10), 649-655.
  • Fisher, D.J. and Burton, D.T., 2003. Comparison of two US environmental protection agency species sensitivity distribution methods for calculating ecological risk criteria. Hum Ecol Risk Assess 9 (3), 675-690.
  • Newman, M.C., Ownby, D.R., Mezin, L.C.A., Powell, D.C., Christensen, T.R.L., Lerberg, S.B. and Anderson, B.A., 2000. Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environmental Toxicology and Chemistry 19 (2), 508-515.
  • Wang, B., Yu, G., Huang, J., Wang, T. and Hu, H.Y., 2010b. Probabilistic Ecological Risk Assessment of OCPs, PCBs, and DLCs in the Haihe River, China. TheScientificWorldJournal 10, 1307-1317.
  • Shao, Q.X., 2000. Estimation for hazardous concentrations based on NOEC toxicity data: an alternative approach. Environmetrics 11 (5), 583-595.
  • Hose, G.C. and Van den Brink, P.J., 2004. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data. Arch Environ Con Tox 47 (4), 511-520.
  • Spiegelhalter, D.J., Best, N.G., Carlin, B.R. and van der Linde, A., 2002. Bayesian measures of model complexity and fit. J Roy Stat Soc B 64, 583-616.
  • He, W., Qin, N., Kong, X., Liu, W., Wu, W., He, Q., Yang, C., Jiang, Y., Wang, Q., Yang, B. and Xu, F., 2014. Ecological risk assessment and priority setting for typical toxic pollutants in the water from Beijing-Tianjin-Bohai area using Bayesian matbugs calculator (BMC). Ecological Indicators 45, 209-218.
  • Dietzel, A. and Reichert, P., 2012. Calibration of computationally demanding and structurally uncertain models with an application to a lake water quality model. Environmental Modelling & Software 38, 129-146.
  • Ramin, M., Stremilov, S., Labencki, T., Gudimov, A., Boyd, D. and Arhonditsis, G.B., 2011. Integration of numerical modeling and Bayesian analysis for setting water quality criteria in Hamilton Harbour, Ontario, Canada. Environmental Modelling & Software 26 (4), 337-353.
  • Wang, B., Yu, G., Huang, J., Yu, Y., Hu, H. and Wang, L., 2009. Tiered aquatic ecological risk assessment of organochlorine pesticides and their mixture in Jiangsu reach of Huaihe River, China. Environ. Monit. Assess. 157 (1), 29-42.
  • 王印, 2009. 基于物种敏感性分布(SSD)的生态风险评价方法及其应用研究, 北京大学, 北京.
  • Jørgensen, S.E., Ladegaard, N., Debeljak, M. and Marques, J.C., 2005. Calculations of exergy for organisms. Ecol. Modell 185 (2-4), 165-175.

 

底图